
Comparison of Data Preprocessing Techniques on
Software Sources for Topic Modeling

Author John Willems

Student Number 835669790

Date April 22nd, 2014

Comparison of Data Preprocessing Techniques on
Software Sources for Topic Modeling

Master Thesis

Master Software Engineering

Faculty of Management, Science & Technology

Open Universiteit (OUNL)

Author John Willems

Student Number 835669790

Date April 22nd, 2014

Chairman prof. dr. M.C.J.D. van Eekelen

Supervisor dr. B. Heeren

Course Number T75317

Abstract

Studies have shown that topic modeling with Latent Dirichlet Allocation (LDA) is a

useful (semi-)unsupervised technique to find topics in software source code that share

latent commonalities and reveal information about the software system that was not

known before. As topic modeling uses unstructured data we found no consensus in lit-

erature how to conduct data preprocessing on software source code to extract unstruc-

tured data. We define unstructured data as documentation, comments, string literals

and programmer-defined names. In this thesis we want to find the data preprocessing

technique that leads to the most optimal topic distribution for a given software system,

therefore we create an experiment in which we compare four data preprocessing tech-

niques. We select two techniques from literature, we define one by ourselves and we

try one technique in which we take the software source code as-is. To measure the dif-

ferences between the four techniques we use structural coupling metrics. We develop

software that is dedicated to our experiment. We use the domain-specific language

Rascal to develop software for data preprocessing and calculations. With the program-

ming language Java we develop software for LDA topic generation with Gibbs sam-

pling and word stemming. Results suggest there is minor difference between the four

techniques when we perform the experiment for two software systems. This implies

we can use the software source code as-is for topic modeling. If future work confirms

this preliminary result it means a significant reduction of effort using topic modeling

for software systems.

Keywords: Latent Dirichlet Allocation, Topic Modeling, Rascal, Metrics, source code

v

vi

Table of Contents

 Abstract..v

 Summary...xi

 Samenvatting...xii

1 Introduction...1
1.1 THESIS STATEMENT...1
1.2 SCOPE...2
1.3 THESIS OVERVIEW AND ORGANIZATION...4

2 Domain-Specific Language Rascal...5
2.1 INTRODUCTION...5
2.2 RASCAL'S M3 MODEL...7
2.3 RASCAL TYPE SYSTEM..9
2.4 PATTERN MATCHING..9
2.5 RASCAL-TO-JAVA BRIDGE..10
2.6 COMMA-SEPARATED VALUES...10

3 Probabilistic Topic modeling with LDA..11
3.1 DEFINITIONS OF IR MODELS...11
3.2 LDA ALGORITHM WITH GIBBS SAMPLING...12

4 Coupling Software Metrics...17

5 Data Preprocessing Tool..18
5.1 DEFINITION DATA PREPROCESSING TECHNIQUES..18
5.2 DATA PREPROCESSING TECHNIQUES IMPLEMENTATION...19

6 Topic Generation...22

7 Coupling Metrics Calculations...25

8 Data Preprocessing Techniques Comparison and Result....................................27
8.1 DEFINITION INNER AND OUTER TOPIC COUPLING..27
8.2 RESULT...29

9 Threats to Validity...31
9.1 VERIFY RESULT METRICS CALCULATIONS WITH PROGRAM CKJM...31
9.2 RASCAL ISSUES..34
9.3 CHOICE COUPLING METRICS..34

10 Related Work...35

11 Conclusion and Future Work...37
11.1 CONCLUSION..37
11.2 FUTURE WORK..38

12 Appendices..I

vii

13 Bibliography...XIII

List of Tables
 Table 1-1: Characteristics of our two systems, JHotDraw and jEdit.............................3
 Table 2-1: Rascal model M3 core relations...8
 Table 2-2: Rascal Basic Types...9
 Table 3-1: topic assignments of terms in document x...13
 Table 3-2: frequency of all terms from all M documents grouped by topic: posterior
distribution...13
 Table 3-3: example Gibbs sampling subtracted 1 from entry "land" ,"crocodile"......14
 Table 3-4: example Gibbs sampling replaced topic with question mark.....................14
 Table 3-5: example Gibbs sampling multiplication frequency topics and frequency
term "crocodile"..14
 Table 3-6: example Gibbs sampling updated topic distribution..................................15
 Table 3-7: example Gibbs sampling updated posterior distribution............................15
 Table 5-1: Overview Definition Unstructured Text of the four Techniques................19
 Table 6-1: Stop-word list for each technique...23
 Table 9-1: Box Plot Figures Metrics Comparison jEdit..32
 Table 9-2: Box Plot Figures Metrics Comparison JHotDraw......................................33

Illustration Index
Figure 1-1: Overview processes and data-flow..4
Figure 2-1: EASY Paradigm..6
Figure 2-2: Extract -Analyze-View paradigm..7
Figure 3-1: Graphical model representation of LDA [2]..12
Figure 3-2: Process flow LDA topic generation...15
Figure 6-1: Snapshot document-topic matrix θ of jEdit of the Raw technique............24
Figure 8-1: abstract representation of topic assignment and document coupling metric
relations..28
Figure 9-1: jEdit comparison metrics CBO Rascal and CKJM tool............................32
Figure 9-2: jEdit comparison metrics CA Rascal and CKJM tool...............................32
Figure 9-3: JHotDraw comparison metrics CBO Rascal and CKJM tool....................33
Figure 9-4: JHotDraw comparison metrics CA Rascal and CKJM tool.......................33
Figure 12-1: Top-Words Selective technique. Left jEdit, right JHotDraw......................I
Figure 12-2: Top-Words Grant technique. Left jEdit, right JHotDraw..........................II
Figure 12-3: Top-Words Thomas technique. Left jEdit, right JHotDraw.....................III
Figure 12-4: Top-Words Raw technique. Left jEdit, right JHotDraw..........................IV
Figure 12-5: Box Plot Ti metric with CBO for JHotDraw..V
Figure 12-6: Box Plot Ti metric with CBO* for JHotDraw..V
Figure 12-7: Box Plot Ti metric with DAC for JHotDraw..V
Figure 12-8: Box Plot Ti metric with ATFD for JHotDraw...VI
Figure 12-9: Box Plot Ti metric with CA for JHotDraw..VI
Figure 12-10: Box Plot To metric with CBO for JHotDraw.......................................VII
Figure 12-11: Box Plot To metric with CBO* for JHotDraw.....................................VII
Figure 12-12: Box Plot To metric with DAC for JHotDraw.......................................VII
Figure 12-13: Box Plot To metric with ATFD for JHotDraw....................................VIII

viii

Figure 12-14: Box Plot To metric with CA for JHotDraw..VIII
Figure 12-15: Box Plot Ti metric with CBO for jEdit...IX
Figure 12-16: Box Plot Ti metric with CBO* for jEdit...IX
Figure 12-17: Box Plot Ti metric with DAC for jEdit...IX
Figure 12-18: Box Plot Ti metric with ATFD for jEdit...X
Figure 12-19: Box Plot Ti metric with CA for jEdit..X
Figure 12-20: Box Plot To metric with CBO for jEdit...XI
Figure 12-21: Box Plot To metric with CBO* for jEdit...XI
Figure 12-22: Box Plot To metric with DAC for jEdit..XI
Figure 12-23: Box Plot To metric with ATFD for jEdit..XII
Figure 12-24:Box Plot To metric with CA for jEdit...XII

Appendices
Appendix A: Top-words per technique...I
Appendix B: Box plots JHotDraw...V
Appendix C: Box plots jEdit..IX

ix

List of Abbreviations and Symbols

ATFD Access To Foreign Data

CA Afferent Coupling

CBO Coupling Between Objects

CK Chidamber & Kemerer

CKJM Chidamber and Kemerer Java Metrics

CSV Comma-separated Values

CVE Common Vulnerability and Exposure

CWI Centrum Wiskunde en Informatica

DAC Data Abstraction Coupling

DSL Domain-Specific Language

EASY Extract Analyze Synthesize Paradigm

IR Information Retrieval

JDK Java Development Kit

JDT Eclipse Java Development Tool

JWNL Java WordNet Library

LDA Latent Dirichlet Allocation

ML Machine Learning

MOOD Metrics Object Oriented Design

MSR Mining Software Repositories

PHP Hypertext Preprocessor

pLSI Probabilistic Latent Semantic Analysis

REPL Read-Eval-Print-Loop

RTC Relational Topic Coupling

RTM Relational Topic Model

SDK Software Development Kit

SQL Structured Query Language

URI Uniform Resource Identifiers

XML Extensible Markup Language

α Hyper parameter document-topic distribution

β Hyper parameter topic-term distribution

θ Document-topic matrix

φ Topic-term matrix

x

Summary

Information Retrieval (IR) techniques are developed to handle unstructured data

which makes them a useful technique to discover relationships in software reposito-

ries between different artifacts and that can help to understand a software system. In

particular, topic modeling was found to be very useful because it enables

users/researchers to discover latent relations between documents in a fully automated

(semi-)unsupervised way. One of the most popular techniques for probabilistic topic

modeling is Latent Dirichlet Allocation (LDA), which assigns topics to documents

with a certain probability.

We define unstructured data in software source code as documentation, comments,

string literals and programmer-defined names. In our research about studies which

apply LDA on software source code we found no consensus in data preprocessing

techniques to extract the unstructured data from software source code.

In this research we want to find a data preprocessing technique, that leads to the

best topic distribution for a given software system, therefore we create an experiment

in which we compare four data preprocessing techniques. We select two techniques

from literature, we define one by ourselves and we try one technique in which we take

the software source code as-is.

To measure the differences between the data preprocessing techniques, we use the

structural coupling metrics CBO, CBO*, DAC, ATFD and CA. Each metric measures

a different kind of coupling. We develop a data preprocessing and metrics calculation

tool in the domain-specific language (DSL) Rascal and is dedicated to our experiment.

In Java we implement word stemming with Wordnet and for LDA topic generation

with Gibbs sampling we use the Java framework Mallet. We perform the experiment

for the software systems JHotDraw and jEdit.

Results suggest that there is a minor difference between the four data preprocessing

techniques. This implies we can use the software source code as-is for topic modeling.

If future work confirms this preliminary result it means a significant reduction of

effort using topic modeling for software systems.

xi

Samenvatting

Information Retrieval (IR) technieken zijn ontwikkeld om met ongestructureerde

gegevens om te gaan, waardoor ze een geschikte techniek blijken te zijn om relaties in

software repositories te ontdekken. Deze technieken kunnen een bijdrage leveren aan

een beter inzicht in de samenhang van de artefacten in een software repository. Een

van deze IR technieken is Topic Modellering die gebruikers en onderzoekers in staat

stelt om latente relaties in software systemen te ontdekken. Eén van de meest popu-

laire topic modeleringsalgorithmen is Latent Dirichlet Allocation (LDA), wat een

probabilistisch model is en topics aan documenten toewijst met een bepaalde

waarschijnlijkheid.

In onze studie, waarbij LDA wordt toegepast op de broncode van een software

systeem, hebben we geen consensus kunnen vinden hoe ongestructureerde data te

extraheren van software broncode. Hierbij definiëren we ongestructureerde data als

documentatie, commentaar, string literals en naamgeving zoals die door de ontwikke-

laar is bepaald.

In dit onderzoek willen we een data extractietechniek vinden die de extractie van

de onstructureerde data zodanig selectief uitvoert, dat hierdoor de beste verdeling van

topics naar documenten plaatsvindt. We vergelijken vier data extractietechnieken met

elkaar. Twee technieken selecteren we uit de literatuur, we creëren een techniek zelf en

als vierde techniek nemen we de broncode in zijn geheel als ongestructureerde data.

Om de verschillen tussen de vier technieken te kunnen meten, gebruiken we de struc-

turele koppeling metrieken CBO, CBO*, DAC, ATFD en CA die ieder een ander

aspect van koppeling meten.

Specifiek voor ons experiment ontwikkelen we software. In de domein-specifieke

taal Rascal ontwikkelen we software die de ongestructureerde data uit de broncode

extraheert en de metriek koppeling berekeningen uitvoert. Voor LDA topic generatie

met Gibbs sampling ontwikkelen we software in Java met gebruikmaking van het

Java framework Mallet. Eveneens in Java ontwikkelen we functionaliteit die werk-

woorden tot hun stam terugbrengt en zelfstandige naamwoorden tot hun

enkelvoudsvorm. De software systemen waar we ons experiment op uitvoeren zijn

JHotDraw en jEdit.

xii

De voorlopige resultaten suggereren dat er een minimaal verschil is tussen de vier

data extractietechnieken. Daarom is het extraheren van ongestructureerde data uit

broncode overbodig en kan topic modellering meteen op broncode worden toegepast.

Verder onderzoek, waarbij meerdere software systemen worden betrokken, moet dit

resultaat bevestigen.

xiii

1. Introduction

1 Introduction

We want to organize a corpus, let's say of 10.000 documents, in 100 topics. Reading all

the documents and assigning them to the appropriate topic is a very labor and time

intensive task. A more convenient and less time-consuming way is to use an algorithm,

assuming the documents are available in a digital format. In the field of Information

Retrieval (IR) topic modeling is a technique to reveal latent information from unstruc-

tured data in an automated way and assign documents to topics [1,2,17]. Within topic

modeling several techniques are available, such as probabilistic Latent Semantic

Indexing (pLSI) [1] and Latent Dirichlet Allocation (LDA) [1,2]. We will use the latter

in this research because pLSI provides no probabilistic model at the document level

[2].

Software systems are getting increasingly larger and more complex [8,10,17,19],

therefore it is challenging for software developers and project managers to get an over-

view of the software system at hand. Research in software engineering has made sig-

nificant progress in mining and analyzing software repositories in a structured manner

[8,17,19]. An automated technique to get an understanding of latent relations between

software source code (source code) files of a software system was missing until in

2007 Linstead et al. [19] published a paper on how to apply topic modeling on soft-

ware systems using LDA, showing the effectiveness and usefulness of this technique.

Other researchers followed Linstead et al. investigating the possibilities of topic mod-

eling for software systems [7,8,15,17]. In general, IR models are now subject of

research in mining software repositories, like concept mining, constructing source

code search engines, recovering traceability links between artifacts (for example

between developer's emails and source code, or between a bug database and source

code), calculating source code metrics and clustering similar documents [17].

1.1 Thesis Statement

The unstructured data in software source code is stored as comments, documentation,

string literals and programmer-defined names [7,17]. To our knowledge and of Thomas

[17, page 49], no study is conducted to determine a data preprocessing technique to

extract the unstructured data from source code which leads to a topic distribution that

is useful for practitioners. The research we studied of Thomas [17], Lindstead et al.

 1

1. Introduction

[19] and Grant et al. [7] we found no consensus in data preprocessing. For example,

Thomas separates the programmer-defined names and filters out the Java program lan-

guage1 keywords, applies word stemming and the common English stop-word list,

Grant et al. just take the methods and separate the programmer-defined names but do

not mention anything about the program language specific keywords and stop-words,

Lindstead et al. just remove the common English stop-words and the names of all

classes of the Java SDK. The latter is different from the Java language keywords, as

Thomas mentions. We also consider the Raw technique in which we take the Java

source code files as-is, without any data preprocessing, as an extreme opposed to the

other three techniques.

Our hypothesis:

Based on intuition we think we can do better as Thomas and Grant and describe the

data preprocessing technique Selective: we separate the unstructured data (documen-

tation, comments, string literals and programmer-defined names) through data pre-

processing from source code, separate the programmer-defined names in components,

use a common English stop-words list and apply stemming to the terms. To determine

if our technique results to a better topic distribution, compared to the technique

described by Thomas and Grant and the Raw technique, we measure the results of the

four techniques with structured coupling metrics.

1.2 Scope

We develop a tool for our experiment in the Domain-Specific Language (DSL) Rascal2

which enables us to do data preprocessing, calculate coupling metrics and to compare

the results between the four data preprocessing techniques. We use the programming

language Java to develop tools for word stemming and for topic generation. For the

former we use WordNet3 (a lexical database for English) and Java software library

JWNL4, and for the latter we use the Java software framework Mallet5. The tool will

simulate the data preprocessing technique of Thomas [17] and Grant et al. [7], because

1 http://www.oracle.com/us/technologies/java/overview/index.html
2 http://www.rascal-mpl.org/
3 http://wordnet.princeton.edu/
4 http://sourceforge.net/apps/mediawiki/jwordnet/index.php
5 http://mallet.cs.umass.edu/

 2

1. Introduction

their tools are not available in a usable format for us. We perform our experiment on

the two software systems JHotDraw6 and jEdit7.

In table 1-1 we list the main characteristics of the two software systems.

Characteristics JHotDraw jEdit

Purpose Drawing Framework Text Editor

Implementation Language Java Java

License Open Source Open Source

Release 6.0 beta 1 5.1.0

Number of Source Code Files 309 535

Lines of Code (thousands) 57 172

Number of terms (thousands) 619 830

Table 1-1: Characteristics of our two systems, JHotDraw and jEdit.

In figure 1-1 we depict an overview of the different processes of our experiment and

storages for intermediate data, with chapter and section reference where we outline the

process. We store intermediate data because it simplifies the development and it

enables us to execute each process in isolation. The processes execute in a defined

sequence as the arrows indicate.

6 http://sourceforge.net/projects/jhotdraw/
7 http://sourceforge.net/projects/jedit/

 3

1. Introduction

The tool is solely built for the purpose of the experiment, therefore we put no effort in

making the tool scalable or usable for other purposes. On the other hand we put much

effort in the reliability and validity because the results highly depend on certain condi-

tions and parameters.

1.3 Thesis Overview and organization

In chapters 2 until 4 we provide a theoretical background of the techniques and meth-

ods we use in the research outlined in this thesis. Chapter 2 covers a general introduc-

tion of the Domain-Specific Language Rascal with details of language features we use

in the tool that we develop for our experiment. In chapter 3 we provide a theoretical

overview of LDA with Gibbs sampling and a comprehensive example. In chapter 3 we

give a definition of the coupling metrics we use in our experiment.

In chapters 5 until 9 we outline the experiment which we conduct. Chapter 5

describes the tool we develop for data preprocessing. In chapter 6 we describe the

Topic Generation implementation. Chapter 7 the Coupling metrics Calculations. In

chapter 8 we define the data preprocessing techniques comparison and the results.

Chapter 9 covers the threats of validity and chapter 10 related work. In final chapter

11 our conclusion and future work.

 4

Figure 1-1: Overview processes and data-flow

2. Domain-Specific Language Rascal

2 Domain-Specific Language Rascal

In this chapter we give in section 2.1 an introduction of the Domain-specific Language

Rascal. In section 2.2 we outline the Rascal M3 model. In section 2.3 the Rascal type

system. Section 2.4 covers Rascal's pattern matching and section 2.5 the Ras-

cal-to-Java bridge to call Java programs. The final section 2.6 covers how Rascal han-

dles Comma-separated Values files.

2.1 Introduction

Metaprogramming is developing software programs that manipulate source code or

generate new source code [16], in which the source code is the executable specification

of a software system and thus exhibits behavior [17]. Source code can be treated as

data, therefore every program language with file access features could be used as a

metalanguage. In such a case the steps performed are:

a) read the source code

b) analyze the source code

c) modify and/or create new code

d) save the source code

e) compile to an executable format

f) execute the program and observe the new behavior.

Metaprogramming in multipurpose program languages is troublesome due to the lack

of features specific for this purpose, therefore a metaprogramming language with focus

on the implementation of a Domain-Specific Language (DSL) for rapid construction of

software analysis and software transformation is advisable. Rascal is such a DSL [16]

and therefore we use Rascal for our research.

Rascal implements the EASY paradigm, depicted in figure 2-1, in which we see the

same steps as listed above from a till f. The data store “?” indicates the sys-

tem-of-interest and can be anything. For example, software source code or files with

comma-separated values. In particular, access to the former is supported by the Rascal

Eclipse8 plug-in, which enables access to the Eclipse Java Development Tool (JDT)9

8 http://www.eclipse.org/
9 http://www.eclipse.org/jdt/

 5

2. Domain-Specific Language Rascal

from the Rascal development environment. The Eclipse plug-in also supports

Read-Eval-Print-Loop (REPL) for testing purposes.

The language Rascal is easy accessible for developers who are familiar with the pro-

gram languages C++ and/or Java, or in general with an imperative programming lan-

guage with a static type system [16]. Particularly to the same concepts in other pro-

gramming languages the primary data types, structured control flow and the exception

handling are similar. To make Rascal even more easy accessible it has a layered

design. As a developer gets more comfortable with the language she is free to use more

advanced features.

In this research we are only interested in the analysis of the source code and not in

modifying or generating new source code, therefore we use the Extract-Analyze-View

paradigm [16] as depicted in figure 2-2. This is a sub-set of the EASY paradigm

because the synthesis is omitted.

 6

Figure 2-1: EASY Paradigm

2. Domain-Specific Language Rascal

2.2 Rascal's M3 model

The process “Extract”, in figure 2-2, will store a representation of the source code in

the internal Rascal structure M3 [11], which is a unified model for storing facts about

programs. Software projects have to be available as an Eclipse project in compilable

source code, as a prerequisite for Rascal M3 model. The M3 structure keeps data in an

immutable, typed form, which can be directly produced, manipulated and analyzed

with the Rascal primitives. We describe two elements of the M3 structure which are

important for this research. These elements are locations and relations.

For locations the URI is defined as

|<scheme >://<auth>/<path>?<qry>|(off>,<len>)

The URI keeps an information link back to the source code. The location can be

physical or logical. We use only the latter in which the logical location is the Java

Eclipse project. A typical example for this scheme is:

loc project = |project://JEDIT|;

When the project is defined the M3 data structure can be derived from the project,

for example:

 7

Figure 2-2: Extract -Analyze-View paradigm

2. Domain-Specific Language Rascal

M3 m3Model = createM3FromEclipseProject(project);

M3 defines a naming scheme for every source code element within the project. For

example, the former is a Java class and the latter a method element.

|java+class:///org/ ... /textarea/ChunkCache|

|java+method:///org/... /Macros/getMacro(java.lang.String)|

Other examples of occurrences for scheme are “java+primitives”, “java+constructor”

and “java+compilation Unit”. The latter is the equivalent of a Java file. Since we use

only Java projects in the research the schemes start with “java”.

The M3 model contains core relations between code locations in pairs, for instance:

<|java+class:///org/View|,|java+field:///org/View/prev|>

denotes a binary relation between a class and a field. The full list of relations cov-

ered by Rascal is given in table 2-1.

All M3 relations can be produced, manipulated and analyzed using Rascal primi-

tives.

M3 relation <x,y> Description

fieldAccess Attribute x access field attribute y

extends Attribute x extends attribute y

typeDependency Attribute x depends on the type of attribute y

methodInvocation Attribute x makes an invocation on method attribute y

containment Attribute x contains attribute y

messages Attribute x contains string literals y

names Attribute name is located at attribute y

documentation Attribute x has documentation within attribute y

implements Attribute x implements interface attribute y

uses Attribute x (project level) makes use of attribute y

annotations Attribute x has annotation attribute y

methodOverrides Attribute x is overrides attribute y

modifiers Attribute x has modifier y

types Attribute x has parametrized type y

declarations Attribute x is declared by attribute y

Table 2-1: Rascal model M3 core relations

 8

2. Domain-Specific Language Rascal

2.3 Rascal Type System

The Rascal type system [12] is based on a type lattice with void at the bottom and

value at the top. The latter is super-type of all types. In between are the atomic values

(bool, int, real, str, loc and datetime), type of tree values and composite types. Exam-

ple of composite types are list [&T], set [&T], tuple [&T,&T], rel[&T,&T] and

lrel[&T,&T]. Sub-typing is always covariant; return types of methods are also covari-

ant and argument types are contravariant [12]. Custom types can be defined through

type literals. For example

alias customType = lrel[str name1, str name2]

In table 2-2 we depict the Rascal basic types [16].

Type Example

bool true, false

int 1, 0, -1, 3245422

real 1.0, 1.043e10, -4.23

str “abc”

loc |java+class:///org/gjt/sp/jedit/View|

tuple[t1, .. tn] <1,2>,<”abc”,5,8>

list[t] [], [1,2,3],[“abc”,2,5.0]

set[t] {}, {“abc”,3,4},

rel[t1, tn] {<1,2,3>,<4,5,6>}

lrel[t1, ... , tn] [<1,2,3>,<4,5,6>]

map[t,u] (), (1:true, 2:false), (6:{1,2,3})

node F, add(x,y), g(“abc”, [1,2,3])

Table 2-2: Rascal Basic Types

2.4 Pattern matching

Pattern matching is provided against all data types [12,16]. Furthermore, Rascal sup-

ports deep matching (/), negative matching (!), set matching and list matching. The

patterns can be used in switch-case statements and comprehensions. Rascal is not

using groups as common with regular expressions, but the notation <name:expression>

in which the result of the expression is assigned to name. In the case there are multiple

matches the backtracking works from right to left.

 9

2. Domain-Specific Language Rascal

2.5 Rascal-to-Java Bridge

In order to make use of programs developed in Java, Rascal is enriched with a Ras-

cal-to-Java bridge [12]. For example, the following fragment shows a typical example

to call a Java method.

@javaClass{nl.ou.stemming.Stemmer}

java str stemWord(str arg);

The instantiation of the class is achieved with the @javaClass annotation. The sec-

ond line invokes the method. The return type is a Rascal type, in the example type str.

The return type, in the invoked Java method, is of type IvalueFactory and constructs

the required Rascal value. If the return types do not match an exception is thrown.

2.6 Comma-Separated Values

Rascal supports reading and writing of CSV data from and to files [12]. In writing

and reading of files, type literals are of great use.

For example:

alias aliasResult = rel[str name1, str name2];

aliasResult nameResult = { ... };

writeCSV(nameResult,|file:///filedir/fileName.csv|);

Since the variable nameResult is of type aliasResult, the CSV file contains as first

row the column names name1 and name2. The other way around works in the same

way, for example:

aliasResult fileContent =

readCSV(#aliasResult,|file:///filedir/fileName.csv|);

The type of value fileContent is of aliasResult. In this way Rascal provides type

safety with external sources.

 10

3. Probabilistic Topic modeling with LDA

3 Probabilistic Topic modeling with LDA

Probabilistic topic models, one of the basic models of IR, have their origin in Machine

Learning (ML) and include a set of algorithms that aim at detecting and annotating

large archives of thematic information. Topic models are based on the idea that docu-

ments are a mix of topics, where a topic is a probability distribution over the words

[1,17].

Before going into the details of probabilistic Topic Modeling with LDA we give in

section 3.1 the definitions of the common vernacular in IR. In section 3.2 we describe

the LDA algorithm with Gibbs sampling with a comprehensive example.

3.1 Definitions of IR models

This section describes the terms and common definitions within the field of IR models

[2,17]. We will use these in the remainder of this thesis.

A term w is string of one or more alphanumeric characters. Terms are not unique

in a document.

A document is an ordered sequence of N terms denoted by w = (w1 … wN)

where wn is the nth term in the sequence.

A corpus is an unordered set of M documents denoted by d = {w1 ... wM}

A vocabulary is an unordered set of m terms in C denoted by V = {v1 ... vm}

The term-document matrix A is an m xM matrix whose i,j entry is the

number of occurrences of term wi in document dj.

A topic z is an m-length vector of probabilities over the vocabulary V. The total

numbers of topics is K.

The document-topic matrix θ is a M x K matrix whose i,j entry is the

probability of topic zj in document di.

 11

3. Probabilistic Topic modeling with LDA

The topic-term matrix φ is a K x m matrix whose i,j entry is the probability of

term wj in topic zi.

3.2 LDA algorithm with Gibbs sampling

LDA is a probabilistic topic modeling method and assigns documents to multiple top-

ics, each with a certain probability [2].

The LDA algorithm is depicted in a graphical model in figure 3-1. The M area repre-

sents the documents and the N area the terms and each plate can be interpreted as a

for-each loop. The hyper-parameter α is used for the document-topic distribution and

hyper-parameter β for the topic-term distribution. Both α and β are always > 0. The

other variables are defined in the previous section.

We explain the working of the LDA algorithm with an example. If we want to organize

10.000 documents manually we create a list of 100 topics in advance. The latter is

always the case and the number of topics is defined by K. In our example the list could

start with the topic labels “water”, “land”, “air” etc. Next we have 100 highlighters in

different colors. Each color represents a topic. When reading a document x we high-

light the key terms with the corresponding topic color. For example the term “tiger” is

assigned to the topic “land”, but there are also terms assigned to multiple topics. For

example, the term “crocodile” belongs to the topic “water” but also to the topic “land”.

Therefore, the term “crocodile” is highlighted by two different highlighters what is

also the case for term “swan”. We do this for all the terms in document x and end up

with a topic-term distribution depicted in table 3-1.

 12

Figure 3-1: Graphical model representation of LDA [2]

3. Probabilistic Topic modeling with LDA

Topic z land water land land air water

Term w swan crocodile crocodile tiger swan swan

Table 3-1: topic assignments of terms in document x

We do this for all the documents in the corpus and omit the terms such as “the”, “a”,

“or” etc. because they contain no semantic information and cannot be allocated. When

done with reading, we group all the terms by color and remember the source document

of each term. An example is depicted in table 3-2 which is called the posterior distribu-

tion.

water land air

tiger 0 6 0

crocodile 4 4 0

swan 1 2 6

Table 3-2: frequency of all terms from all M documents grouped by topic: posterior distribution

By now, we know which topic belongs to which documents and we know the terms of

each topic.

Topic modeling algorithms fall into two categories. Sampling-based algorithms and

variational algorithms [2]. We will ignore the latter and mention it only for complete-

ness. Sampling-based algorithms collect samples from the posterior distribution to

approximate it with an empirical distribution. We use Gibbs sampling as the sam-

pling-based algorithm [1,7,17] and explain Gibbs sampling with the use of the poste-

rior distribution as depicted in table 3-2 by applying the following computation:

Initialization topic assignments randomly

for each iteration (issued by parameter, for example 10.000)

for each document

for each word

re-sample topic for word, given all other words and their

current topic assignment

produce repost

 13

3. Probabilistic Topic modeling with LDA

We give an example, derived from a presentation given by David Mimno10, for one

iteration and refer to the data in tables 3-1 and 3-2. We reassign the term “crocodile” of

topic “land”.

We subtract 1 from the entry of column “land” and row “crocodile” as depicted in

table 3-3.

water land air

tiger 0 6 0

crocodile 4 3 0

swan 1 2 6

Table 3-3: example Gibbs sampling subtracted 1 from entry "land" ,"crocodile"

For the topic distribution of document x we change topic “land” in a question mark for

term “crocodile” as depicted in table 3-4.

z water water ? land air land

w swan crocodile crocodile tiger swan swan

Table 3-4: example Gibbs sampling replaced topic with question mark

Subsequently we look for the term crocodile in another topic. First we look for the fre-

quency of the topics in document x. Topic “land” occurs twice, “water” once and “air”

once. Secondly we look how many times the term “crocodile” occurs in the posterior

distribution. Then we multiply the values with the hyper-parameters. As we can see, in

table 3-5, the number of occurrences of crocodile for topic “air” is zero. In this case the

hyper-parameter β is used, because in the multiplication no terms are allowed to be

zero. In case the number of topics for this document equals zero the hyper-parameter α

is used (for convenience we set the hyper-parameters α and β both to 1 in this exam-

ple).

Water Land air

crocodile (2 * α) * (4 * β) = 8 (1 * α) * (4 * β) = 4 (1 * α) * β = 1

Table 3-5: example Gibbs sampling multiplication frequency topics and frequency term "crocodile"

10 http://journalofdigitalhumanities.org/2-1/the-details-by-david-mimno/

 14

3. Probabilistic Topic modeling with LDA

Next we search for the topic which has the highest probability and assign the term

crocodile to this topic. From the results we conclude this is topic “water” and update

the topic distribution for document x. This is depicted in table 3-6.

z water water water land air

w swan crocodile crocodile tiger swan

Table 3-6: example Gibbs sampling updated topic distribution

Also we update the posterior distribution for the final result in the iteration of our

example. To the number of occurrences for “crocodile” for the topic “water” 1 is

added. The new value is 5. This is depicted in table 3-7.

Water Land air

tiger 0 6 0

crocodile 5 3 0

swan 0 2 6

Table 3-7: example Gibbs sampling updated posterior distribution

As depicted in figure 3-2 the process flow from corpus to the matrices θ and φ the

parameters K, α and β are together with the term-document matrix A the input of the

LDA algorithm, therefore LDA is a semi-unsupervised algorithm. The three parameters

have significant influence on the populations of matrices θ and φ.

Research shows that the K-factor is difficult to determine [2,7,15,17]. If the k-factor is

too low, terms are assigned to topics they not really belong to. On the other hand if the

K-factor is too high terms are shattered over topics and semantic information is lost.

 15

Figure 3-2: Process flow LDA topic generation

3. Probabilistic Topic modeling with LDA

Research has been conducted to find optimal values for the hyper-parameters α and β

[15], but future work is needed. A high value of α results in a better smoothing of the

topics for each document. A high value for β results in a more uniform distribution of

terms per topic [15]. The most optimal distribution is when documents are assigned

with a probability of nearly 100% to one topic and topics consist of terms with a prob-

ability of nearly 100% and other terms from the vocabulary with a probability of

nearly 0%. In practice this is nearly impossible [1,17].

 16

4. Coupling Software Metrics

4 Coupling Software Metrics

Extensive research has been conducted to quantify the quality of software [5,9,13],

which has resulted in metric suites such as the CK suite [5] and the MOOD suite [9].

Software metrics are very useful because they can provide in an automated way quality

information about a software system [5,9,13]. A good deal of metrics can be found in

the suites, but we are only interested in software coupling metrics because they enable

us to compare the different techniques of extracting unstructured data from source

code as input for topic modeling.

De Souza and Maia [13] provide five coupling metrics to measure the coupling

between classes in a software system and show there is a correlation regarding cou-

pling between classes of software systems which belong to the same category. Exam-

ples of categories used in the study are games, development and audio & video. De

Souza et al. have selected these metrics because each of the metrics shows another

aspect of the coupling between classes. The metrics are:

a) CBO (Coupling Between Objects) from the CK suite. This metric measures if

there exists a reference from this class to another class. A reference is defined

by the use of an attribute or a method invocation. A reference between two

classes is only counted once.

b) CBO* is a variant of CBO: this metric counts the number of references from

this class to the attributes of the other class and the number of method invoca-

tions of the other class.

c) DAC (Data Abstraction Coupling): counts the number of attributes declared

with the type of another class.

d) ATFD (Access To Foreign Data): this metric counts the number of accesses of

attributes from this class to other classes, directly or via accessor methods.

e) CA (Afferent Coupling): this metric counts the number of other classes that

refer to this class. Actually, it is the inverse of CBO*.

 17

5. Data Preprocessing Tool

5 Data Preprocessing Tool

In this chapter we present the data preprocessing tool we built for the four data prepro-

cessing techniques. First we give in section 5.1 the definition of the four techniques. In

section 5.2 we describe the implementation of the data preprocessing tool.

5.1 Definition Data Preprocessing Techniques

We define the four data preprocessing techniques as follows (the text in italic is copied

unmodified from the corresponding research):

Grant: Given a source code corpus, a simple parse extracts the terms of
interest from each document. In our case, these are programming
language keywords, and programmer-defined names. Since many
programmer-defined names have internal structure, we separate such
names in their component pieces if they have been built in one of the
standard ways (for example, breaking at underscores) and count the entire
name and all of its sub-pieces as terms. For example, the term
get_attribute would be represented by three terms: get, attribute and
get_attibute. ….. Each source code package was segmented into
individual methods or functions without comments using TXL. [7]

Thomas: Before topic models are applied to source code, several
preprocessing steps are generally taken in an effort to reduce noise and
improve the resulting topics.

• Characters related to the syntax of the programming language (e.g.,
“&&”, “->”) are removed; programming language keywords (e.g., “if”,
“while”) are removed.

• Identifier names are split into multiple parts based on common naming
conventions (e.g., “oneTwo”, “one_two”).

• Common English-language stopwords (e.g., “the”, “it”, “on”) are
removed.

• Word stemming is applied to find the root of each word (e.g., “changing”
becomes “chang”).

• In some cases, the vocabulary of the resulting corpus is pruned by
removing words that occur in, for example, over 80% of the documents
or under 2% of the documents.

 18

5. Data Preprocessing Tool

The main idea behind these steps is to capture the semantics of the
developers’ intentions, which are thought to be encoded within the
identifier names and comments in the source code. The rest of the source
code (i.e., special syntax, language keywords, and stopwords) are just
noise and will not be beneficial to the results of topic models. [17]11

Raw: we take the text from the Java files as-is and do no parsing, no
stemming and no separation of programmer-defined names in components.

Selective: We selectively separate all unstructured data from the source
code which consists of two parts: We take the comments, documentation
and string literals, which we extract with the use of regular expressions.
The second part consists out of programmer-defined names, including type
names. We apply separation of programmer-defined names on all
unstructured data (we assume programmer-defined names are also present
in the comments, documentation and string literals). Finally we remove the
common English-language stop-words from the vocabulary.

5.2 Data Preprocessing Techniques Implementation

For all four techniques we omit the copyrights information at the top of all files

because the text is identical in every Java source file for the software system JHot-

Draw, therefore the text adds no additional semantic information for topic modeling.

For the software system jEdit we have found several versions of the copyrights text but

these texts are similar to each other. Before we describe the different techniques we

give in table 5-1 an overview of the definition of unstructured data for each technique.

Technique Definition Unstructured Text

Selective • Comments, documentation and string literals

• Decompose programmer-defined names in terms

• Stemming of terms

Thomas • Whole source code

• Decompose programmer-defined names in terms

• Stemming of terms

Grant • Source code of methods

• Decompose programmer-defined names in terms

• programmer-defined word as term

Raw • Whole source code

Table 5-1: Overview Definition Unstructured Text of the four Techniques

11 We omit pruning because of time constraints of the project.

 19

5. Data Preprocessing Tool

For the technique Selective we use Rascal pattern matching to extract the comments,

documentation and string literals from the source code as opposed to the techniques

Grant, Raw and Thomas where we simply read the Java files as a whole. We use the

Rascal M3 language independent meta model (see section 2.2) to extract facts from the

source code. The annotation relation m3@containment contains the relations between

attributes. For example, the relations expressed in the pairs <Class A, Field F1>, <Unit

1, Class A> and <Class A, Method m> express that the Field F1 is part of Class A,

Class A is part of Unit 1 and Method m is part of Class A. We choose the compilation

unit as the root level and relate all attributes to this level in the following way: select

all attributes with first element in the pair equal and lower than the compilation unit

and take the transitive closure of the relations. From the result we select all relations

with first pair element compilation unit, Referring to the example, the result is the

pairs <Unit 1, Class A>,<Unit 1, Field 1> and <Unit 1, Method m>. This enables us to

collect all attributes for each compilation unit.

We use Rascal pattern matching to decompose programmer-defined names in com-

ponent pieces. For example, the programmer-defined camel-case class name “Default-

InputHandlerProvider” taken from jEdit is decomposed into the terms “Default”,

“Input”, “Handler” and “Provider”. The same applies to programmer-defined names

containing dashes or underscores.

The programmer-defined component pieces are merged with the comments, docu-

mentation and string literals and we apply word stemming on all terms. The software

library we use is WordNet in combination with the library JWNL. Rascal invokes the

Java program we developed. This is possible because Rascal provides a Rascal-to-Java

bridge as outlined in section 2.5 Finally the terms are stored in a comma-separated val-

ues file.

For the technique Grant only the methods and constructors from the source code are

taken in account and we use the annotation relation m3@containment to merge the

attributes to the level of compilation unit and decompose the programmer-defined

names in the following way. We take the same example as for technique Selective.

Class name “DefaultInputHandlerProvider” is decomposed in the terms “Default”,

“Input”, “Handler”, “Provider” and “DefaultInputHandlerProvider”. The terms are dif-

ferent from the technique Selective because we keep also the programmer-defined

 20

5. Data Preprocessing Tool

name as term. We store the terms per compilation unit in a comma-separated values

file.

For the technique Thomas we read the Java files, decompose the program-

mer-defined names as we do in the technique Selective, apply stemming to the terms

and finally store the terms in a comma-separated values file.

For the technique Raw we read the Java files and store the terms, without any mod-

ification, in a comma-separated values file.

 21

6. Topic Generation

6 Topic Generation

Topic generation is implemented in Java with making use of the Java framework Mal-

let. The process takes the comma-separated values file produced in the previous

process Data Preprocessing (see figure 1-1), as input and the following parameters (see

Figure 3-2: Process flow LDA topic generation):

• number-of-topics K = 45 for both JHotDraw and jEdit.

• Number-of-iterations the algorithm will perform is set to 10.000

• number-of-top-words is set to 10.

• optimize-interval is set to 10

• burn-in-period is set to 300

• alpha and beta parameters are set to their defaults

• stop-word list is the Mallet Common English stop-word list, extended for tech-

nique Thomas with the Java keywords. For techniques Grant and Raw the

stop-word list is omitted.

The comma-separated values file, the output from the previous process, is by Mallet

internally transformed in a term-document matrix A (see section 3.1 for definition).

For number-of-topics we use the K-factor of 45 for both jEdit and JHotDraw as men-

tioned by Thomas [17, page 151]. Although software system jEdit is three times the

size of JHotDraw (see table 1-1), we find realistic topics with a K-factor of 45 for

jEdit. Figure 12-1 in Appendix A depicts the top-words of technique Selective for jEdit

and JHotDraw. For jEdit, on the left side of figure 12-1, we can recognize topics spe-

cific for a text editor. For example, topic 0 deals with file handling and topic 6 deals

with tables. On the right side, JHotDraw, topic 0 deals with operations on figures and

topic 1 with the construction of figures. Figures 12-2 till 12-4 in appendix A depict the

top-words of the other three techniques for JHotDraw and jEdit.

Grant et al. [7,8] propose to calculate the K-factor based on the number of docu-

ments with the formula: t (x)=7.25∗x0.365 where x is the number of documents.

Based on this formula the K-factor for JHotDraw is 59 and for jEdit 72, which is

higher than Thomas proposes. Noting that Grant et al. takes the methods in source

 22

6. Topic Generation

code as documents, this implies the number of documents is much higher than the

number of Java source code file which we use as documents.

We take the value for number-of-iterations from Thomas [17, page 151], which is

10.000. The values of the optimize-interval, the burn-in-period and number-of-

top-words are chosen based on the guidelines posted on the Mallet website. The opti-

mize-burn-in-period is the number of iterations before the hyperparameter (section 3.2)

optimization starts. The optimize-interval turns on the hyper-parameter optimization

and holds the number of iterations optimization is applied. The parameter num-

ber-of-top-words holds the number of top words stored per topic in a file for topic

inspection. See figure 12-1 until 12-4 in Appendix A for the top-words per data prepro-

cessing technique for jEdit and JHotDraw.

Table 3-3 shows which stop-word list is used, if any, for the four techniques.

Technique Stop-words list

Selective Mallet Common English stop-word list12

Thomas Mallet Common English stop-word list

Java Language Keywords13

Grant No stop-word list

Raw No stop-word list

Table 6-1: Stop-word list for each technique

For the Selective technique Java language keywords are only in the term-document

matrix A when these keywords are part of the unstructured data.

In case of technique Thomas the term-document matrix A includes all the source code,

hence also the Java language keywords. The use of the stop-word list, as listed in table

6-1, will remove these Java language keywords from the vocabulary before generating

the topics but also from the comments, documentation, string literals and decomposed

programmer-defined names.

For the techniques Raw and Grant no stop-words list is used and all Java language

keywords are part of the vocabulary. In figure 12-2 Appendix A we depict the

top-words for both jEdit and JHotDraw for technique Grant. We see remarkably few

12 https://github.com/jmcejuela/mallet/blob/master/src/cc/mallet/pipe/TokenSequenceRemoveStop-
words.java

13 http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

 23

6. Topic Generation

Java language keywords and no programmer-defined names in the topics. In general

the topics make sense.

Because of the size of the file we show in figure 6-1 only a small fraction of the docu-

ment-topic matrix θ of technique Raw.

The first column denotes the document number, and the second column denotes the

document name where we omit the pathname for clarity. The third column and further

denote the topic and the probability of the topic for this document. For document 0

with name CircleFoldPainter.java topic 15 has a probability of 44%, topic 4 a probabil-

ity of 40% etc.

 24

Figure 6-1: Snapshot document-topic matrix θ of jEdit of the Raw technique

0 CircleFoldPainter.java 15 0.4496390672 4 0.4000455256 33 0.052809984 27 0.0519809974

1 AboutDialog.java 21 0.5183804607 44 0.1739738039 4 0.0836362029 2 0.0736105911 24 0.070673248

7. Coupling Metrics Calculations

7 Coupling Metrics Calculations

In chapter 4 we defined the coupling metrics we use for this research. In this chapter

we describe how to calculate these coupling metrics with Rascal. As the compilation

unit is the root level (see section 5.2), we calculate all coupling metrics also at this

level. Therefore we use the Rascal annotation relation m3@containment to relate all

attributes to the compilation unit level.

CBO* (Coupling Between Objects count) metric:

First we calculate the number of method invocations of this class to other classes.

Secondly we calculate the number of field accesses of this class to other classes. Sub-

sequently we add both together. For the former calculation we use the annotation rela-

tion m3@methodInvocation but only for the methods, which excludes the constructor

methods. For the latter we use the annotation relation m3@fieldAccess.

So we exclude the constructor invocations, because this implies new object creation

and this metric excludes them. Also excluded are invocations to a super class.

Therefore we exclude all relations from the annotation m3@extends.

CBO (Coupling Between Objects) metric:

This metric is in essence identical to the CBO* metric, but references from this class to

other classes are only counted once. The CBO* relations are implemented as list rela-

tions, hence we store the CBO relations in a set relation, which excludes duplicates.

DAC (Data Abstraction Coupling) metric:

Since this metric counts the number of types used in this class from other classes we

use the annotation m3@typeDependency but we exclude the primitive types and type

variables.

ATFD (Access To Foreign Data):

This metric calculates the number of fields this class can access from other classes. We

use the annotation m3@fieldAccess to retrieve these relations. Additionally this metric

counts the number of accessor methods this class invokes from other classes.

 25

7. Coupling Metrics Calculations

We use the annotation m3@methodInvocation to retrieve these relations but only keep

those methods that have a return type.

CA (Afferent Coupling):

This metric calculates the number of other classes that refer to this class. We use the

inversion of metric CBO*.

 26

8. Data Preprocessing Techniques Comparison and Result

8 Data Preprocessing Techniques Comparison and Result

Topics are assigned to documents14 and documents have relationships with other doc-

uments, thus we can calculate the topic coupling. In section 8.1 we give definitions of

inner and outer topic coupling. In section 8.2 we calculate the inner and outer topic

coupling for the four data preprocessing techniques and present the results of the com-

parison.

8.1 Definition Inner and Outer Topic Coupling

 Figure 8-1 depicts an abstract representation of the results of the chapters 6 Topic

Generation and 7 Coupling Metrics Calculations. The designation with prefix “T” rep-

resents a topic and with prefix “D” represents a document. We denote the coupling

relations between documents assigned to the same topic with Ti, where “i” stands for

inner. The coupling relations between documents assigned to different topics we

denote with To, where “o” stands for outer. The relations of Ti and To are disjunct for a

given topic T.

For a formal definition of inner and outer coupling we customize the formula of

Gethers and Poshyvanyk [6], which measures the probability between documents, to

our needs.

Given a topic T the degree of inner coupling between the documents of this topic is

defined as follows:

Tik ,m=
∑

x , y∈Ck

Rm(x , y)

|c k|

where k∈{0…K } ,m∈{CBO ,CBO* , DAC , ATFD ,CA }

and Rm is a function that returns the coupling relation between two documents for m

and Ck is the set of all documents assigned to Tk.

We illustrate the calculation of Ti with an example based on figure 8-1.

14 We call compilation units from this point on documents in accordance with the definition of Topic
Modeling.

 27

8. Data Preprocessing Techniques Comparison and Result

For topic T1 the coupling relation consists of the pairs (D2,D1), (D4,D3) and (D1,D4).

For T1 the value of |Ck| is 4 because the number of documents assigned to T1 is 4. As

we count each coupling relations as 1, thus Rm = 1, the summation of Rm is 3. There-

fore we get Ti is ¾ for topic T1. The Ti for topic T2 is 1/2.

For the degree of outer coupling between documents assigned to this topic and docu-

ments assigned to other topics we define:

To k ,m=
∑

x∈Ck , y∈(C−Ck)

Rm (x , y)

|ck|

where k∈{0…K } , z∈{0…K } ,m∈{CBO ,CBO * ,DAC , ATFD ,CA }

and Rm is a function that returns the coupling relation between two documents, the first

assigned to Tk and the second to another T for m, Ck is the set of all documents

assigned to Tk, C is the set of all documents.

We also illustrate the calculation of To with an example based on figure 8-1.

For topic T1 the coupling relation consists of the pairs (D1,D4) and (D4,D3) because

both are a coupling relation in Ti of T1 the summation of Rm is zero. The number of

documents assigned to T1 is 4, thus |Ck| is 4, which leads to a To for T1 of zero (0/4).

For Topic T2 we have the coupling relations (D6,D2) and (D6,D3). The latter is

 28

Figure 8-1: abstract representation of topic assignment and
document coupling metric relations.

D1

T1

D2

T2

D4 D5

D6
D3

8. Data Preprocessing Techniques Comparison and Result

excluded, due it is a relation in Ti for T2, therefore the summation of Rm is 1. The

value for |Ck| is 4, thus the To for T2 is 1/4.

8.2 Result

As depicted in figure 1-1, the process “Data preprocessing Techniques Comparison” is

the final process and calculates the inner and outer coupling for the four data prepro-

cessing techniques, which enables us to compare the four techniques with each other.

The input of this process are the different coupling metrics calculations and the doc-

ument-topic matrix θ for each data preprocessing technique. The document-topic

matrix θ is rotated to topic-document pairs, thus we know which documents are

assigned to which topics. From the metrics calculation we know the coupling relation-

ship between the documents.

The output of this process consists of five files per software system, representing

the five coupling metrics, and each contains the values To and Ti for the four tech-

niques. To visualize the result we produce box plots15.

We consider high values for Ti better than low values because it shows high cou-

pling between documents assigned to the shared topic. For To we like to see low val-

ues, considering it denotes less coupling between documents assigned to different top-

ics.

For both software systems JHotDraw and jEdit we create box plots depicted in

appendix B and C respectively. The bottom of the box denotes the 25% percentile, the

top of the box the 75% percentile (successively lower and upper hinge), the horizontal

line denotes the median and the horizontal dotted line the mean. To visualize the

spread we use whiskers and outliers.

First we look at software system JHotDraw, see figure 12-5 till 12-14 in appendix

B. The pattern we observe is that there is little difference between the data preprocess-

ing techniques what the mean and median concerns and the values are relative equal

spread between the whiskers. We find only a few outliers, but the upper hinges

between the techniques differ the most. Taking all the differences and matches in

account we conclude the four data preprocessing techniques look very similar to each

other. Surprisingly the technique Raw which we added as an extreme technique per-

15 https://plot.ly/

 29

8. Data Preprocessing Techniques Comparison and Result

forms well in comparison to the others. For system jEdit, see figure 12-15 till 12-24 in

appendix C, we observe a similar pattern as we see for JHotDraw.

We observe also another similarity. In almost all box plots the mean has a higher

value than the median. This could mean that the data is skewed to the right which

points to higher than smaller values. For Ti this means there are more topics with doc-

uments that have a high number of coupling relations. On the other hand we see the

same for To. Which points to a high number of coupling relations between documents

assigned to different topics.

 30

9. Threats to Validity

9 Threats to Validity

As we spent a lot of effort in the experiment, we want to exclude unwanted conditions

that could influence the result of the project. As depicted in figure 1-1 we have the pro-

cesses “Verify result Metrics calculations with CKJM tool” not mentioned yet. In sec-

tion 9.1 we describe this process.

We use as main programming language Rascal, which is an experimental language

under development at the Centrum Wiskunde & Informatica (CWI)16. We have discov-

ered a few bugs and created workarounds, but there is still a risk other bugs could

influence the result. Section 9.2 covers the issues related to Rascal. The final section

9.3 in this chapter covers potential issues regarding the coupling metrics we use.

9.1 Verify result Metrics calculations with program CKJM

Process “Verify result Metrics calculations with CKJM tool” compares the result of the

calculations for the metrics CBO and CA with the output of the program Chidamber

and Kemerer Java Metrics (CKJM)17. CKJM calculates the metrics as defined by Chi-

damber and Kemerer [5,13] and additionally the metric CA [13]. CKJM is a com-

mand-line program and calculates the metrics based on the Java binary classes. The

latter could be an issue because the metrics we calculate with Rascal are based on the

source code. Another issue in comparing of software metric implementations is

observed by Lincke et al. [14]. They found differences between different metric tools,

including the program CKJM we use. Nevertheless we use the CKJM tool, but with

caution.

We omit how to execute and use the program CKJM as we focus only on the differ-

ences between the two metric calculation outputs. We depict the results in the figures

9-1 till 9-4 with the use of box plots, as every dot represents a metric for a document.

The tables 9-1 and 9-2 hold the figures of the box plots.

16 http://www.cwi.nl/
17 http://www.spinellis.gr/sw/ckjm/

 31

9. Threats to Validity

CBO Rascal CBO CKJM CA Rascal CA CKJM

Outliers 69 81 68 163

75% Percentile 6 13 3 8

Mean 4.5 7.6 3.4 11.1

Median 3 6 1 3

25 Percentile 0 2 0 1

Table 9-1: Box Plot Figures Metrics Comparison jEdit

For system jEdit, figure 9-1 and 2-1 and table 9-1, we see the values of the Rascal

CBO calculation are about half of the CKJM calculation. As far as the CA calculations

concern the Rascal calculations are about one third of the CKJM calculation.

 32

Figure 9-1: jEdit comparison metrics CBO Rascal and CKJM tool

Figure 9-2: jEdit comparison metrics CA Rascal and CKJM tool

9. Threats to Validity

CBO Rascal CBO CKJM CA Rascal CA CKJM

Outliers 29 81 68 166

75% Percentile 5 9 3 8

Mean 3.4 7.6 3.4 7.6

Median 5 4 1 3

25 Percentile 0 2 0 1

Table 9-2: Box Plot Figures Metrics Comparison JHotDraw

The figures 9-3 and 9-4 and table 9-2 represent the metric values of JHotDraw, regard-

ing the metrics CBO and CA, in comparison with the calculation of the program

CKJM.

For JHotDraw we see the same pattern as for jEdit. The CBO metrics calculation is

about half of the values of CKJM and one third of the CA metrics values. We see the

 33

Figure 9-3: JHotDraw comparison metrics CBO Rascal and CKJM tool

Figure 9-4: JHotDraw comparison metrics CA Rascal and CKJM tool

9. Threats to Validity

same difference or even at a larger magnitude in the research of Lincke et al. [14] We

feel confident our metric calculation is trustful enough for our purpose.

9.2 Rascal issues

Considering Rascal is our main programming language for this research and Rascal is

a research project at CWI which implies Rascal is not a mature programming lan-

guage, Rascal could be a threat to our project. We have found several bugs and outline

the workarounds:

a) Rascal supports reading and writing of CSV files. Unfortunately, when the file

contains reals in E-notation, Rascal interprets these as a string value. When

topic generation writes probabilities less than 0.5% in E-notation we have to

exclude these documents from the topic assignments.

b) As we use M3 annotations for the calculation of metrics and the extraction of

comments and documentation from the source code we highly depend on this

model. Unfortunately, we found that the annotation M3@documentation does

not contain the comments of fields, therefore we built a workaround and imple-

mented the extraction of comments and documentation with the use of regular

expressions.

9.3 Choice Coupling Metrics

We use five structural coupling metrics based on a study of De Souza and Maia

[13], outlined in chapter 4 and section 9.3, as a measurement to compare the different

data preprocessing techniques. The selection of the coupling metrics is based on the

different kinds of coupling representations. In a study of Gethers and Poshyvanyk [6]

12 structural metrics are used in which three are the same as we use. These are the

metrics CBO, DAC and CA. Gethers and Poshyvany mention in the threats to validity

section that the structural metric they use could miss some kind of structural coupling

in comparison with dynamic coupling metrics.

 We conclude it is difficult to select the right set of coupling metrics and to be com-

plete in covering all different kinds of couplings, nevertheless the result of our

research depends greatly on them.

 34

10. Related Work

10 Related Work

Software repositories contain a wealth of valuable information about software projects

[21]. In the past, these repositories were used only where they were intended for, such

as maintaining versions of source code, tracking the status of defects [10] and archiv-

ing communication. Software products are developed to support operations on these

repositories. For example, Subversion18 is a popular tool in maintaining source code

repositories.

Practitioners often depend on their experience, intuition and gut feelings [21] to

make important decisions, but because software systems are getting increasingly more

complex, larger in size and more systems are ecosystems [3], the need for more infor-

mation from repositories and other sources to support the decision process increases.

As the traditional tools and methods are not designed to provide this information, prac-

titioners are getting more interested in the field of Mining Software Repositories

(MSR) and IR. MSR analyzes and cross-links the data available in software reposito-

ries to uncover information from software systems and project [21]. In support of

MSR, IR intends to utilize the unstructured and unlabeled text available in these soft-

ware repositories [17,20]. Since this thesis is about topic modeling we focus on work

in the field of the latter.

Grant et al. [8] successfully show how topic modeling can support the maintenance

phase of software development. When a developer makes a change in the software, it

is common that a significant part of the change is related to one topic. Grant et al. con-

clude that there is a relationship between latent topic models and co-maintenance his-

tory. The relationship can be used in the maintenance phase to prevent errors and sug-

gest related changes.

In ongoing research Lopez [3] applies topic modeling to understand the evolution

of software ecosystems. The work is intended to explore the role of topic location tech-

niques in understanding the evolution of a software ecosystem and discovering pat-

terns of topics evolving in the evolution of the software system.

Neuhaus and Zimmerman [18] apply topic modeling to the Common Vulnerability

and Exposure (CVE) database. Although no source code is analyzed, it provides the

developer useful information about how to avoid/eliminate vulnerabilities. For exam-

18 http://subversion.tigris.org/

 35

10. Related Work

ple, Neuhaus et al. found that the majority of all vulnerabilities is caused by cross-side

scripting, SQL injection, buffer overflow and not applying security updates to PHP.

The use of topic modeling in this context is to find trends and it enables developers to

stay ahead of others who want to exploit these vulnerabilities.

Gethers and Poshyvanyk [6] use topic modeling to discover new dimensions of

coupling, which are not covered by structural coupling metrics. Their metric Relational

Topic based Coupling (RTC) makes use of Relational Topic Modeling (RTM) which is

an extension of LDA. As LDA discovers latent relationships between documents, RTM

is also capable of predicting links between documents in the corpus.

Thomas et al. [20] introduce topic modeling to study the evolution of a software

system and follow topics over time. They find that topics expose peak and drops that

response to the actual change activity in the source code which makes evolution of

topics observable and quantifiable.

The commonality between these studies, except the research of Neuhaus and Zim-

merman, is that the researchers have to extract the unstructured data from the source in

some way. As the extraction of the unstructured data is also used as the starting point

of this research, it is also the starting point for these studies and has influence on the

results. Gethers and Poshyvanyk uses a technique what we see as a mix of the Thomas

and Selective technique. The research of Lopez is still in the exploration phase and no

technique is defined yet. The others are described in this thesis elsewhere. We find

another confirmation that these studies conduct a technique without reference to other

research, or reasoning why the data preprocessing technique is used and is suitable for

the research.

We added the research of Neuhaus and Zimmerman to give an example, how topic

modeling can give a contribution to software development in a way not directly related

to source code.

 36

11. Conclusion and Future Work

11 Conclusion and Future Work

In this chapter we present our conclusion based on the results of the experiment and

how this matches with the hypothesis. Section 11.1 covers this topic. In section 11.2

we propose future work in the field of software data preprocessing for topic modeling.

11.1 Conclusion

In this thesis we defined four data preprocessing techniques to extract unstructured

data from source code and built a tool that generates topics based on four data prepro-

cessing techniques. Subsequently we developed a tool that calculates coupling metrics

for the two software systems jEdit and JHotDraw. We used the metrics as a measure to

compare the coupling between the documents assigned to topics. As a result, we

observed that all data preprocessing techniques look similar to each other. In the

hypothesis we predicted the technique Selective would result to a better topic distribu-

tion compared to the other three techniques. Based on the result of the experiment we

have to conclude the hypothesis is neither wrong nor right.

Considering the results of the data preprocessing techniques look similar to each

other we look to the similarities between the techniques. The techniques Grant,

Thomas and Selective separate the programmer-defined names in components. Tech-

nique Grant also keeps the programmer-defined names in the vocabulary, but when we

look at figure 12-2 in appendix A we see no programmer-defined words in the

top-words (first 10 terms, defined as parameter in chapter 6 Topic Generation, with the

highest probability of topic z, see section 3.1 Definitions of IR models) which could be

decomposed into components. Continuing the comparison between these three tech-

niques we see not that many Java keywords and programmer-defined names in the

top-words of technique Grant. For example, the terms “int”, “the” and “class” are

present in several topics of technique Grant because no stop-word list is used. We also

used no stemming for the technique Grant but despite this, we see not that many terms

that could be stemmed.

Figure 12-4 in appendix A depicts the top-words of technique Raw. We see in many

topics programmer-defined names, as opposed to the techniques Grant. Notable is that

the terms for JHotDraw are shorter than the terms for jEdit. We can only conclude that

this is a system characteristic. Also notable is that the topics contain components as

 37

11. Conclusion and Future Work

terms together with the programmer-defined names themselves, despite we did not

separate the programmer-defined name into components for technique Raw. For exam-

ple topic 4 of jEdit contains the terms “line”, “firstline” and “physicalline” and for

topic 8 the terms “plugin”, “jar” and “pluginjar”.

With the information we obtain from the experiment we cannot make a comparison

between the techniques Grant, Thomas and Selective and the technique Raw.

11.2 Future work

In the previous section we made a comparison between the data preprocessing tech-

niques. Although we can explain the similar results between the techniques Grant,

Thomas and Selective, we cannot find a similarity between these three and the Raw

technique.

The techniques Thomas and Selective are the most similar to each other, therefore

we propose to merge them and replace the common English stop-word list by a cus-

tomized one for each software system. We are in the opinion that unstructured data of a

software system is different from regular unstructured data, for example from a novel,

therefore we propose to experiment with a customized stop-word list such as proposed

by Makrehchi and Kamel [4]. Regarding the extraction of unstructured data from

source code we are in the opinion that technique Selective is the more appropriate one,

in particular when we take a customized stop-word list into account. We can argue this

with a question: why first take all text from the source code and remove it partly later,

instead of just take what is needed?

As we mention in section 9.3 the completeness of the coupling metrics could influ-

ence the result. To avoid this uncertainty we propose to replace the coupling metrics

with a vector representation of the relationships between documents and involve the

topic to document assignment probability. For example Grant et al. [7] use such an

approach.

Also, we propose to expand the experiment to other software systems with more

documents. If the extended experiment confirms this preliminary result it means a sig-

nificant reduction of effort using topic modeling for software systems.

 38

12 Appendices

Appendix A: Top-words per technique

I

Figure 12-1: Top-Words Selective technique. Left jEdit, right JHotDraw

0 file vfs browser directory path filter method favorite view 0 figure draw event remove add change basic invalidate area

1 code component constraint grid extend row object return layout 1 figure locator south north east west relative bound align

2 task run keymap thread runnable manager update listener request 2 point double line length angle relative ctr len seg

3 action edit macro method view bean shell handler set 3 file project open save option pane sheet chooser change

4 class method object constructor static field args instance generate 4 expect number path text color stroke transform control found

5 color size font layout width row maximum minimum button 5 point curve param bezier error fit digitize hat path

6 entry table row model method column index set filter 6 figure bound handle task set restore transform basic lead

7 interpreter call stack node bsh error eval type callstack 7 path node bezier point index control segment chop set

8 abbrev map abbrevs completion word index keyword method key 8 flavor data object double return quad bound transfer support

9 node style tree result search string syntax hyper nod 9 view draw handle tool selection listener event select editor

10 option pane group label model general add save init 10 element attribute param return child namespace null full xml

11 menu context png param item edit dialog action property 11 layout row inset component number vertical column container leave

12 path vfs file param session error comp copy target 12 reader stream read system param data exception return current

13 key event shortcut bind input prefix handler binding modifier 13 return param method set point bound give visible change

14 method namespace space bsh variable interpreter script object import 14 method invoke param exist return obj default accessible getter

15 view widget status update caret method show font memory 15 width height frame border size dimension inset image paint

16 mouse menu action evt method update handler popup change 16 action label bundle resource util org jhotdraw app evt

17 dockable window dock layout entry method view bottom position 17 parser builder validator exception ixml xml create data throw

18 color gutter highlight text area paint font extension line 18 child figure composite layout layouter presentation bound double inset

19 token xsp statement literal expression jjtc jjtn bsh jjtree 19 attribute key figure set draw method color entry default

20 search replace match matcher start set pattern find case 20 class enum factory storable dom create base argument add

21 buffer view edit set pane marker change close method 21 figure mouse create evt tool editor draw prototype press

22 message log error source change debug send handler component 22 dom input output svg read write figure child attribute

23 history model set text url max method entry size 23 stroke grow color line width triangle chop fill diamond

24 line buffer fold edit start block end column text 24 edit undo redo presentation add composite return progress manager

25 method param return set edit add string link call 25 handle figure track anchor modifier lead step draw start

26 method chunk mirror xml list element handler tag start 26 exception line param error xml data occur system number

27 text register area data edit flavor transferable casanova list 27 menu bar action palette window item default osx tool

28 line screen physical offset visible scroll param text start 28 namespace prefix uri process method ixml associate exception null

29 font open icon selector property server firewall set proxy 29 element param attribute system xml line data throw exception

30 type primitive cast descriptor class null java wrapper object 30 icon property descriptor gen bean return default event array

31 class path loader source manager bsh map listener package 31 draw gen data applet set method init panel form

32 item class constant type insn pool link param writer 32 element current dom attribute document add tag node object

33 word param character tab char case whitespace line size 33 reader entity resolver xml ixml util read param str

34 array vector byte dimension length string put gap base 34 action property listener enable change set evt state event

35 visit label size instruction insn stack block param byte 35 sheet listener message param parent display component dialog type

36 selection caret line method text edit offset select end 36 writer xml print write string element indent pretty enm

37 plugin jar class load plugins resource path manager edit 37 prefs window preference float component frame toolbar handler run

38 indent edit line undo buffer bracket listener replace index 38 element attribute xml string param java map entity char

39 mode property file save load prop marker reload check 39 text holder size font bound inset draw layout tab

40 path file backup string return directory char param edit 40 draw editor view action create selection constrainer composite instance

41 encode print stream read line buffer detector page reader 41 draw editor button label tool create util resource bundle

42 bar split tool config active pane edit screen show 42 listener event notify interest register fire null create list

43 rule token context set parser line match end regexp 43 figure connector connection start target end find draw set

44 action button handler dialog list method class select panel 44 project application file create recent model app action init

II

Figure 12-2: Top-Words Grant technique. Left jEdit, right JHotDraw

0 stream encoding out exception write input read log reader 0 sheet the pane option message listener component parent owner

1 text register get history data flavor url area transferable 1 evt mouse get event handle void popup public tracker

2 line caret get selection offset start end buffer int 2 owner get point new anchor handle locator figure public

3 class name path get string loader source new classes 3 property value change action listener enabled get project void

4 edit property set get selected options new boolean undo 4 button editor stroke bar popup new add tool action

5 key event evt input get focus code stroke prefix 5 get new result drawing set string data null parameter

6 edit get pane split bar config tool set screen 6 undo redo edit public cannot exception name this return

7 plugin get jar string edit path null name log 7 editor view get drawing figures edit action public group

8 callstack node interpreter eval error get bsh stack public 8 get window prefs component bounds screen name palette evt

9 name mode get string property value props null properties 9 key get the resource string bundle argument button base

10 name namespace variable get null bsh space parent set 10 figure child children presentation index basic bounds layout composite

11 active return case string literal old dfa move break 11 insets layout rows left top int right get size

12 add set new get action selected list panel box 12 buf next append number new value path tokenizer token

13 file path string get backup return name directory edit 13 the name element exception xml param line system string

14 row size component grid col layout constraints get int 14 frames bounds frame all scroll height entry set result

15 menu get action item view set void mouse evt 15 reader this xml read str util char exception throws

16 buffer view get edit set pane null new marker 16 the name element attribute namespace string null this param

17 table get entry row model column int set selection 17 double bounds rectangle point width height public this anchor

18 start line end buffer block get int offset column 18 figure get connector connection start target end set point

19 name class method object this get error interpreter clas 19 the public this returns void for and method param

20 type class the get return descriptor name array modifiers 20 figure drawing public void figures remove event invalidated area

21 string int append buf return char len length new 21 icon return the descriptor bean null property get event

22 color font get property style set edit gutter highlight 22 get public new return null int for this add

23 size new byte int length label stack this put 23 name element value the string current attribute dom tag

24 the val name value item put class new string 24 point double curve error bezier hat first new points

25 width height get size left dimension top insets right 25 string this the xml name attribute writer element value

26 dockable window entry get name position layout string docking 26 listener event listeners list fire that edit this notify

27 action name get keymap string shortcut set edit label 27 text bounds get holder edit layout font insets size

28 line physical get int screen lines first scroll visible 28 method the class name object error exception return value

29 pane option tree group listener model event get name 29 out get read write attribute dom add public void

30 word line text offset get chunk index print sep 30 key value attribute get attributes this null figure set

31 tag string name last macro handler element equals null 31 double point return int angle math the line new

32 log message run error task void thread runnable this 32 file project value get set chooser option void app

33 rule token match end null context pattern line rules 33 new drawing view editor button set scroll undo pane

34 true token return case jjtn jjtree xsp node scope 34 action get menu add new set name project property

35 edit new view get property system null static action 35 figure created get prototype drawing null mouse view evt

36 search replace get set view text matcher and find 36 labels get action bundle util resource focus app evt

37 name the menu comp get string png context edit 37 application project model new set void name public string

38 the param method return this public for and null 38 stroke float get width grow double path break case

39 line indent get int buffer offset index fold seg 39 path node bezier point get index double mask public

40 text area line get int selection start caret gfx 40 new add editor tool bar button labels action attributes

41 node tree path result get search new default mutable 41 handle selection handles drawing scale factor rendering repaint value

42 type value lhs primitive return new rhs case error 42 view tool listener drawing void the public set container

43 vfs path file browser get directory session files string 43 image height img width color top icon insets left

44 index model get abbrev int abbrevs size list filter 44 data flavor restore exception clipboard object flavors transferable contents

III

Figure 12-3: Top-Words Thomas technique. Left jEdit, right JHotDraw

0 widget view status set text gjt org edit java 0 element string current attribute dom add tag document object

1 primitive cast null error object wrapper operation java kind 1 application project model app create set recent string org

2 fold level line buffer handler edit print page tab 2 button popup stroke add editor tool bar put color

3 line block buffer column offset size tab index text 3 draw string set applet data result text object null

4 edit property set select option box check add component 4 edit undo redo undoable change presentation exception false javax

5 shortcut keymap string context label key null manager bind 5 attribute key set null object draw color figure stroke

6 font color style text render syntax glyph string null 6 figure create null prototype mouse tool draw target edit

7 offset edit undo listener mgr insert gap length remove 7 sheet option pane message listener component parent param show

8 encode backup stream read java exception reader buffer input 8 layout row inset component vertical container number extension parent

9 property mode marker set save string prop load edit 9 window component prefs palette focus screen event put evt

10 active string literal dfa move state kind cur nfa 10 color map put number buf append token tokenizer path

11 vfs file browser path directory filter favorite view set 11 point handle view anchor draw cursor lead track edit

12 task thread run runnable error update log awt request 12 transform figure bound affine decorator change restore rectangle data

13 rule match null tag pattern parser set token string 13 action menu add bar set item open null recent

14 menu item edit split bar add pane tool config 14 svg attribute add dom figure write read element exception

15 error string stream log exception file system source print 15 figure child presentation composite bound layouter add remove null

16 event action mouse evt popup listener set menu key 16 icon descriptor null bean property color event gen set

17 line physical screen scroll visible manager display count buffer 17 path bezier node point index mask control size add

18 history model url text set max string size index 18 text bound font holder layout edit inset size set

19 register text data flavor area transferable edit string log 19 point curve hat bezier error param thread path fit

20 method object error eval null interpreter variable space namespace 20 action bundle label resource util string jhotdraw org key

21 buffer view edit set pane null change org jedit 21 attribute element null namespace child string param full attr

22 tree node result path abbrevs abbrev string search mutable 22 method object invoke exception string param obj target exist

23 table model entry row column set index list selection 23 draw view editor button undo set scroll pane grid

24 node callstack lgpl eval interpreter bsh provision file error 24 inset height width bound leave top image border bottom

25 dockable window layout width height dock entry top bottom 25 figure draw remove event invalidate add listener area edit

26 key event evt input modifier prefix completion null code 26 exception element line param system attribute data string xml

27 path map loader null manager string bsh source base 27 connector connection figure target set point null connect find

28 caret line selection text offset area select buffer position 28 stroke path width line flavor fill decoration grow radius

29 param method string java org gjt object jedit set 29 file project app save open set chooser null unsaved

30 string xml mirror set log write element equal handler 30 reader entity xml util resolver string read system str

31 area text color line gutter highlight selection set caret 31 editor view draw action figure group edit selection select

32 size visit insn put code label stack item constant 32 locator relative bound north south east west rectangle add

33 file path vfs string directory session log exception param 33 listener event list null notify fire interest protect edit

34 row size grid component layout color col width font 34 reader read stream current system exception buffer url java

35 search replace set text matcher find view buffer directory 35 java awt jhotdraw org point figure create geom extend

36 action view macro edit handler set shell bean string 36 property listener change action enable project null state update

37 option pane tree group model path listener event object 37 frame pane desktop set scroll internal arrange arrangement size

38 token true jjtn jjtree node scope false xsp scanpos 38 view tool evt mouse event draw handle key tracker

39 plugin jar string edit null property cache log load 39 point angle line math rectangle length relative ctr geom

40 icon menu edit png screen string param property component 40 add editor tool draw button action bar attribute label

41 line offset token indent context index text bracket buffer 41 handle draw figure selection invalidate add view render set

42 string word length append buf index param len character 42 exception software xml param ixml parser alter java data

43 add set button action list panel layout box select 43 rectangle width height grow point figure bound chop stroke

44 message component listener add log edit bus label source 44 string attribute xml writer element write key param java

IV

Figure 12-4: Top-Words Raw technique. Left jEdit, right JHotDraw

0 log error file catch string out new ioexception static 0 index out bezierpath path void node throws bezierfigure get

1 jedit getproperty new options menu jcheckbox getbooleanproperty isselected addcomponent 1 view void handle tool drawing drawingview figure invalidatedarea editor

2 entry table int row new model void col column 2 the this param exception string software not public xml

3 primitive return type new lhs case value rhs boolean 3 project file app value null final setenabled org evt

4 int line physicalline textarea offset log debug getdisplaymanager firstline 4 new editor put add bar labels color attr taskfigure

5 buffer editpane view jedit bufferset null void buffers scope 5 textholder text bounds editwidget gettext float layout insets figure

6 callstack interpreter node evalerror eval simplenode new namespace throw 6 new add getaction model app project org putaction action

7 color component the font int row code col size 7 key thread value return string argument button null the

8 plugin jedit string jar null path name this pluginjar 8 int rows insets layout cols number container parent allframes

9 jedit public message since pre class name static gjt 9 this string the writer name xml write see param

10 int the item type name final index constant value 10 point new double owner figure handle anchor public handles

11 null context pattern token line rules parserrule end match 11 public new return null void this for int private

12 true token return case jjtn false boolean xsp final 12 the public this and void for returns method specified

13 font style color print jedit float chunks static syntaxstyle 13 new result the string null data getparameter domi getdrawing

14 task runnable void run thread public instance log progress 14 public import jhotdraw java org class awt this return

15 tag string equals out xml write attrs name null 15 the method object return new string methodname obj catch

16 active return case jjmovestringliteraldfa break old long curchar int 16 point double that param points first new error last

17 path vfs file browser string session jedit directory vfsfile 17 new editor add labels rbmi toolbarbuttonfactory org jhotdraw attributes

18 name action string jedit shortcut label actions actionset keymap 18 return null the private static gen icon beandescriptor bean

19 selection caret buffer int the line offset void jedit 19 the name namespace null string element param attribute child

20 buffer int line start startline offset this end jeditbuffer 20 key this object null attributekey value figure newvalue attributes

21 type the class return static string public method int 21 import public java jhotdraw labels org awt app key

22 name null namespace class this object new interpreter method 22 methodname evt jtoolbar event awt java popupmenu jsobject savebutton

23 void view jedit event public gjt new org awt 23 reader this xmlutil str read new the null throws

24 the method this param public return for and that 24 double float bounds rectangle result intersect entry get path

25 width insets height dimension int left color top getpreferredsize 25 double point owner the from figure angle geom locator

26 search cons new jedit replace find searchandreplace start component 26 editor view drawingeditor figures getview new group figure labels

27 encoding read url java history ioexception throws result historymodel 27 double point int return the node mask line public

28 new add jedit getproperty box borderlayout jpanel actionhandler void 28 window prefs toolbar palette name screenbounds preferences bounds screeninsets

29 keyevent evt key textarea null register text void action 29 new color map put buf number append value nexttoken

30 the mode name jedit this log method since value 30 project application newvalue void action app oldvalue null propertychangelistener

31 node defaultmutabletreenode new treepath tree path resulttree evt instanceof 31 insets left top width height right bottom ddouble rectangle

32 jedit view gutter new getproperty jcheckbox options getcolorproperty getbooleanproperty 32 stroke case break color static float get new final

33 name class string path object optiongroup pane new null 33 figure child figures double drawing public children void point

34 int string text param append length return the char 34 null method target class submenu button menu else proxy

35 entry string dockable name window null jedit view docking 35 event listeners this void listenerlist that null for the

36 path file jedit string name static buffer null value 36 figure null connection connector target point start connectionfigure double

37 textarea int gfx the public physicalline screenline void gutter 37 the param element string linenr systemid entity throws name

38 int chunk next return retval text end owner linetext 38 new view editor the undo newvalue org project pbutton

39 view buffer null jedit string static path the beanshell 39 undo owner redo this public that return anedit super

40 name the png jedit param comp string static put 40 the sheet message listener param parentcomponent owner pane dialog

41 the lgpl public file under your provisions this and 41 double rectangle height width point grow bounds this anchor

42 jedit getproperty abbrev buffer mode string options abbrevs new 42 flavor the data dataflavor clipboard requested not transferable xmltransferable

43 return new int string java public this org null 43 the current string name element value public document int

44 the this byte size length opcode label put final 44 evt createdfigure new void figure null getview public mouseevent

Appendix B: Box plots JHotDraw

V

Figure 12-5: Box Plot Ti metric with CBO for JHotDraw

Figure 12-7: Box Plot Ti metric with DAC for JHotDraw

Figure 12-6: Box Plot Ti metric with CBO* for JHotDraw

VI

Figure 12-9: Box Plot Ti metric with CA for JHotDraw

Figure 12-8: Box Plot Ti metric with ATFD for JHotDraw

VII

Figure 12-10: Box Plot To metric with CBO for JHotDraw

Figure 12-11: Box Plot To metric with CBO* for JHotDraw

Figure 12-12: Box Plot To metric with DAC for JHotDraw

VIII

Figure 12-13: Box Plot To metric with ATFD for JHotDraw

Figure 12-14: Box Plot To metric with CA for JHotDraw

Appendix C: Box plots jEdit

IX

Figure 12-17: Box Plot Ti metric with DAC for jEdit

Figure 12-15: Box Plot Ti metric with CBO for jEdit

Figure 12-16: Box Plot Ti metric with CBO* for jEdit

10

X

Figure 12-18: Box Plot Ti metric with ATFD for jEdit

Figure 12-19: Box Plot Ti metric with CA for jEdit

XI

Figure 12-20: Box Plot To metric with CBO for jEdit

Figure 12-21: Box Plot To metric with CBO* for jEdit

Figure 12-22: Box Plot To metric with DAC for jEdit

XII

Figure 12-23: Box Plot To metric with ATFD for jEdit

Figure 12-24:Box Plot To metric with CA for jEdit

13 Bibliography

[1] Blei, D.M. 2012. Probabilistic Topic Models. Commun. ACM. 55, 4 (Apr. 2012), 77–84.

[2] Blei, D.M., Ng, A.Y., Jordan, M.I. and Lafferty, J. 2003. Latent dirichlet allocation. Jour-

nal of Machine Learning Research. 3, (2003), 2003.

[3] Lopez, N. 2013. Using Topic Models to Understand the Evolution of a Software Ecosys-

tem. Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-

neering (New York, NY, USA, 2013), 723–726.

[4] Makrehchi, M. and Kamel, M.S. 2008. Automatic Extraction of Domain-specific Stop-

words from Labeled Documents. Proceedings of the IR Research, 30th European

Conference on Advances in Information Retrieval (Berlin, Heidelberg, 2008),

222–233.

[5] Darcy, D.P. and Kemerer, C.F. 2005. OO metrics in practice. IEEE Software. 22, 6

(2005), 17–19.

[6] Gethers, M. and Poshyvanyk, D. 2010. Using Relational Topic Models to Capture Cou-

pling Among Classes in Object-oriented Software Systems. Proceedings of the 2010

IEEE International Conference on Software Maintenance (Washington, DC, USA,

2010), 1–10.

[7] Grant, S., Cordy, J.R. and Skillicorn, D.B. 2013. Using heuristics to estimate an appro-

priate number of latent topics in source code analysis. Science of Computer Pro-

gramming. 78, 9 (Sep. 2013), 1663–1678.

[8] Grant, S., Cordy, J.R. and Skillicorn, D.B. 2012. Using Topic Models to Support Soft-

ware Maintenance. Proceedings of the 2012 16th European Conference on Soft-

ware Maintenance and Reengineering (Washington, DC, USA, 2012), 403–408.

[9] Harrison, R., Counsell, S.J. and Nithi, R.V. 1998. An Evaluation of the MOOD Set of Ob-

ject-Oriented Software Metrics. IEEE Trans. Softw. Eng. 24, 6 (Jun. 1998), 491–496.

[10] Hassan, A.E., Mockus, A., Holt, R.C. and Johnson, P.M. 2005. Guest Editor’s Intro-

duction: Special Issue on Mining Software Repositories. IEEE Transactions on Soft-

ware Engineering. 31, 6 (2005), 426–428.

[11] Izmaylova, A., Klint, P., Shahi, A. and Vinju, J. 2013. M3: An Open Model for Measuring

Code Artifacts. arXiv:1312.1188 [cs]. (Dec. 2013).

[12] Hills, M., Klint, P. and Vinju, J.J. 2013. Meta-language Support for Type-Safe Access to

External Resources. Software Language Engineering. K. Czarnecki and G. Hedin,

eds. Springer Berlin Heidelberg. 372–391.

[13] De Souza, L.B.L. and Maia, M.D.A. 2013. Do software categories impact coupling

metrics? Proceedings of the 10th Working Conference on Mining Software Reposi-

tories (Piscataway, NJ, USA, 2013), 217–220.

XIII

[14] Lincke, R., Lundberg, J. and Löwe, W. 2008. Comparing Software Metrics Tools. Pro-

ceedings of the 2008 International Symposium on Software Testing and Analysis

(New York, NY, USA, 2008), 131–142.

[15] Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D. and De Lucia, A.

2013. How to effectively use topic models for software engineering tasks? an ap-

proach based on genetic algorithms. Proceedings of the 2013 International Confer-

ence on Software Engineering (Piscataway, NJ, USA, 2013), 522–531.

[16] Klint, P., Storm, T. van der and Vinju, J. 2011. EASY Meta-programming with Rascal.

Generative and Transformational Techniques in Software Engineering III. J.M. Fer-

nandes, R. Lämmel, J. Visser, and J. Saraiva, eds. Springer Berlin Heidelberg.

222–289.

[17] Thomas, S.W. 2012. Mining Unstructured Software Repositories Using IR Models.

Ph.D. Dissertation. Queen’s University.

[18] Neuhaus, S. and Zimmermann, T. 2010. Security Trend Analysis with CVE Topic Mod-

els. 2010 IEEE 21st International Symposium on Software Reliability Engineering

(ISSRE) (Nov. 2010), 111–120.

[19] Linstead, E., Hughes, L., Lopes, C. and Baldi, P. 2009. Software analysis with unsu-

pervised topic models. NIPS Workshop on Application of Topic Models: Text and

Beyond (2009), 52.

[20] Thomas, S.W., Adams, B., Hassan, A.E. and Blostein, D. 2014. Studying Software

Evolution Using Topic Models. Sci. Comput. Program. 80, (Feb. 2014), 457–479.

[21] Hassan, A.E. 2008. The road ahead for Mining Software Repositories. Frontiers of

Software Maintenance, 2008. FoSM 2008. (Sep. 2008), 48–57.

XIV

	Abstract
	Summary
	Samenvatting
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope
	1.3 Thesis Overview and organization

	2 Domain-Specific Language Rascal
	2.1 Introduction
	2.2 Rascal's M3 model
	2.3 Rascal Type System
	2.4 Pattern matching
	2.5 Rascal-to-Java Bridge
	2.6 Comma-Separated Values

	3 Probabilistic Topic modeling with LDA
	3.1 Definitions of IR models
	3.2 LDA algorithm with Gibbs sampling

	4 Coupling Software Metrics
	5 Data Preprocessing Tool
	5.1 Definition Data Preprocessing Techniques
	5.2 Data Preprocessing Techniques Implementation

	6 Topic Generation
	7 Coupling Metrics Calculations
	8 Data Preprocessing Techniques Comparison and Result
	8.1 Definition Inner and Outer Topic Coupling
	8.2 Result

	9 Threats to Validity
	9.1 Verify result Metrics calculations with program CKJM
	9.2 Rascal issues
	9.3 Choice Coupling Metrics

	10 Related Work
	11 Conclusion and Future Work
	11.1 Conclusion
	11.2 Future work

	12 Appendices
	13 Bibliography

